o %

-- A First Line Worm Defense

Helen J. Wang, Chuanxiong Guo,
Dan Simon, and Alf Zugenmaier
Feb 25, 2004

Motivation
» Slammer, MSBlast, CodeRed, Nimda all

exploiting Vulnerabilities whose
patches are released before

» Software patching has been an
effective first line worm defense

Why don’t people patch?

e Disruption:

— Service or machine reboot
o Unreliability

— Software patching inherently hard to test
* Irreversibility

— Most patches are not designed to be easily
reversible

* Accident
— Unaware of patch releases

:' IS0 l’d‘.

Our Vision:
Shielding Before Patching

» Shield addresses the window between
vulnerability disclosure and patch
application.

» Shields: vulnerability-specific, exploit-
generic network filters. Currently focus on
end-host based shields.

« Patch is the ultimate fix of the vulnerability
— Shield is removed upon patch application

Overview of Shield Usage

New Shield Policy

Incoming or Shielded Traffic

Outgoing Shield to Processes or

Network Traffic Vulnerability Remote Hosts
Signature

Per Vulnerability
Shield Network Filter

» Shield lies above the transport layer.

I 0t rdl.

Why apply shields instead?

 Non-intrusive
— No service or machine reboot

» Easy testability -- Reliable

— Configuration independent, unlike
patches —much fewer number of test
cases

— Simple testing through large trace replay
or existing test suites for the protocol in

guestion
hMigrosoft
Research

Outline

v Motivation and overview

» Vulnerability Modeling

 Shield Architecture

* Shield Language

* Analysis

» Shield prototype implementations
* Initial evaluations

* Related Work

« Concluding Remarks

Vulnerability Modeling

Embedded
Application State
Machine in State S2

Protocol State Machine

Specifies vulnerability state machine and

describes how to recognize exploits in H =0t
the vulnerable event rCh

Shield Architecture: Goals

Minimize and limit the amount of state
maintained by Shield

Enough flexibility to support any
application level protocols

Defensive design

Flexibility:
Separate Policy from Mechanism

Shield Mechanisms: generic elements all
application level protocols

— All use finite state automaton for protocol operations
— Event identification and session dispatching

— Out-of-order datagram handling

— Application level fragmentation handling

Shield Policies: varying aspects of individual
application level protocols

— Application identification, event identification, session
identification, vulnerability state machine

specifications
hMigrosoft
Research

Shield Architecture:
Essential Data Structures

1. Per-app vulnerability state machine spec (Spec):
— Transformed from Shield policy
— Instructions for emulating vulnerability state machines
in Shield at the runtime:
e Application identification: ports, dynamic port registration

* Vulnerability signature + reactions: states, events, handlers for
recognizing and reacting to potential exploits

« Event and session identification:

— Location (offset, size) vector of event type and session ID in the
app message. Unit: byte or “WORD” for text-based protocols

e Message boundaries, e.g., CRLF CRLF for HTTP and SMTP
— One state machine per application
e Multiple vulnerability state machines are merged into one
2. Session State: current state and session €ontext
for exploit-checking ii‘esea

Shield Architecture

Per-App
Vulnerability

Policy New

State Machine
Specification

Loader Pdllicies

SessionlD Location
MessageType Location
Message boundary

Raw byles | Application | Raw bytes| Session
Port# "I Dispatcher | SpecID '| Dispatcher

Event for
Session i

Machine
Engine

ParsePayload

TearDownSession| Interpreter

Scattered Arrivals of
an Application Message

An application message is the smallest interpretable unit by the
application
Why scattered arrivals?

— Congestion control or application-specific message handling
Copying: save then pass on
What to save (parsing state): the name of the current incomplete

field, the value of the current incomplete field only if the value is
needed by Shield later

— Per application message
How to differentiate parsing state belonging to multiple sessions:

— Safe to use socket here because only one socket should be used for
delivering a complete application level message despite the M-M
relationship between sockets and sessions.

Pre-session copying: before the session info arrives
— The parsing state is associated with the socket only
In-session copying: after the session info arrives

— The parsing state becomes part of the session stat'érh 50 I

Out-of-Order Application
Datagrams

Save out-of-order datagrams
What is the max? Same as the application

Additional info needed in Shield policy:
seg num location, max number of saved
datagrams

Application Level Fragmentation

* Over TCP: same treatment as scattered
arrivals of a single application level
message

« Over UDP: ordered copies of the
fragments are treated the same as
scattered arrivals

» Additional information needed in Shield
policy: frag ID location

I a0 rdI

Outline

v Motivation and overview

v Vulnerability Modeling

v" Shield Architecture

* Shield Language

* Analysis

Shield prototype implementations
Initial evaluations

Related Work

Concluding Remarks

Shield Policy Language

SHIELD (MSBlast, TCP, (135, 139,445))

SESSION_ID_LOCATION = (12, 4);
MSG_TYPE_LOCATION = (2, 1);

INITIAL_STATE S_WaitForRPCBInd;
FINAL_STATE S_Final;

STATE S_WaitForRPCBindAck;

STATE S_WaitForRPCAlterContextResponse;
STATE S_WaitForRPCRequest;

STATE S_WaitForSessionTearDown;

Event types

EVENTE_RPCBind= (0xOB, INCOMING);
EVENT E_RPCBindAck = (0xOC, OUTGOING);
EVENT E_RPCRequest = (0x0, INCOMING);

STATE_MACHINE = {
(S_WaitForRPCBIind, E_RPCBind, H_RPCBind),
(S_WaitForRPCBindAck, E_RPCBIindAck, H_RPCBindAck),

(S_WaitForRPCBindAck, E_RPCBindNak, H_RPCBindNak),

(S_WaitForRPCBindAck, E_RPCCancel, H_RPCCancel),

(S_WaitForRPCRequest, E_RPCRequest, H_RPCRequest),

Payload

PAYLOAD_STRUCT {
SKIP BYTES(2) pContextiD,
BYTES(1) numTransferContexts
SKIP BYTES(1) dummy1,
BYTES(16) UUID_RemoteActivation,
SKIP BYTES(4) version,

SKIP BYTES(numTransferContexts * 20)
allTransferContexts,
} P_Context;

PAYLOAD_STRUCT {

SKIP BYTES(12) dummy1,

BYTES(4) calliD,

SKIP BYTES(8) dummy?2,

BYTES(1) numContexts,

SKIP BYTES(3) dummy3,
P_ContextinumContexts] contexts,

SKIP BYTES(REST) dummy4,

}P_RPCBInd;

HANDLER H_S_RPCBind (P_RPCBind)

{
IF (>>P RPCBind.contexts{O%::
0xB84A9F4D1C7DCF11861E0020AF6E7C57)

RETURN (S_WaitForRPCBindAck);
Fl
RETURN (S_Final);

HANDLER H_RPCRequest (P_RPCRequest)

{
IF (>>P_RPCRequest.bufferSize > 1023)
TEARDOWN_SESSION;
PRINT ("MSBlast!");
RETURN (S_Final);
Fl
RETURN (S_WaitForSessionTearDown);

I a0 rcl‘

Shield Policy Language: Cont.

» High specialized for Shield’s purpose

« Part 1: Vulnerability state machine specification and generic
application level protocol info such as ports used, the locations of
the event type, session ID, message boundary, etc.

« Part 2: Handler and payload parsing specifications for run-time

interpretation
— Handler specification:

= Variable types: BOOL, COUNTER, BYTES, WORDS

= Two scopes: local or session

= Statements: assignment, IF, special-purpose FOR-loop

— Payload specification:

= Skippable fields of BYTES, WORDS, BOOL, or arrays of

PAYLOAD_STRUCTs
» Coping with scattered arrivals:

— handler continuation — part of the session state consisting of statement

ID queue, parsing state

— Stream-based built-in length functions or regular expression functions:
e.g., “COUNTER c = MSG_LEN (legalLimit);” ¢ = legalLimit + 1 if msg

exceeds “stopCount” number of bytes

Outline

v Motivation and overview

v Vulnerability Modeling

v" Shield Architecture

v' Shield Language

* Analysis

Shield prototype implementations
Initial evaluations

Related Work

Concluding Remarks

Analysis: Scalability

 Scalability with Number of Vulnerabilities

— # of shields doesn’t grow indefinitely — upon
successful patching, the corresponding shields are
removed

— N shields for N apps < 1 shield

— Multiple vulnerabilities of a single app can compound
if they share paths on the vulnerability state machine
— not significant because no more than 3 worm-
exploitable vulnerabilities seen in a single application
in 2003

— Application throughput is at worst halved, traffic
processed once in Shield and once in the application

10

Analysis: False Positives

» Low false positives by nature

e Two sources.:

— Misunderstanding of protocol and payload
spec — can be debugged with large traffic
trace or test suites

— Differential treatment of a certain network
event: could be an exploit in one runtime
setting, and yet completely legal in another

Shield Prototype Implementation

Applications
Winsock 2.0 (WS2_32.DLL)
C
® Shield Layered Service Provider
(SHIELDLSP.DLL)

x Windows Socket Kernel Mode Driver
z (AFD.SYS)
@

TCP/IP ATM Others.

+ 10,702 line C++ code;
* Experimented with 15 vulnerabilities and 7 application
level protocols, such as RPC, HTTP, SMTP, FTP, SMB

11

Outline

v Motivation and overview

v Vulnerability Modeling

v" Shield Architecture

v' Shield Language

v Analysis

v' Shield prototype implementations
* Initial evaluations

* Related Work

« Concluding Remarks

Evaluation: Shield-ability

 What are hard to shield:

— Virus
* vulnerability-driven anti-virus software would be a
better alternative
— Vulnerabilities that could be embedded in
HTML scripting
— Application-specific encrypted traffic — may be
hard to get the key.

e But for SSL/TLS, an SSL-based shield framework
can potentially be built on top of SSL

12

Evaluation: Shield-ability, Cont.

of vul. Nature Worm-able |Shield-able
6 Local No No
24 Client No Hard
12 Server input
validation
3 Cross-site No Hard
scripting
3 Server DoS No Hard

Study of 49 vulnerabilities from MS
Security bulletin board in 2003

Evaluation: Throughput

* Clients and a server use RPC/TCP.
Server sends 100 MB of data back to
initiating clients. Every byte is accessed
by Shield on the server

» Both have P4 2.8GHz and 512 MB of
RAM, connected by 100Mbps Ethernet
switch.

13

Evaluation: Throughput

of clients | w/o Shield w/ Sheld
(Mbps) (Mbps)
10 86.51 86.20
15 86.57 86.36
50 86.66 86.20
100 86.48 85.86
150 86.67 86.24
200 86.06 81.70
500 84.27 82.29
1000 66.29 57.56

Evaluation: False Positives

e Evaluate on shield for Slammer.

» Used an SSRP stress test suite obtained
from a MS test group: 32 test cases for 12
message types

* No false positives observed.

14

Related Work

Threats of Internet worms:

— Own Internet, CodeRed study, Inside Slammer,
Internet quarantine, Warhol

Insufficiency of patches:
— Timing patching, CodeRed study,
Firewall

— More coarse-grained, high-false positive solution

— Will be much improved by fast exploit-signature
generation schemes such as “early bird”

NIDS (such as Bro), traffic normalizers
— Different layers and different purposes._frorp__,S,lhield

rch

Concluding Remarks

Shield: vulnerability-specifc, exploit
generic network filters for preventing
exploits against known vulnerabilities.

Initial prototyping and evaluation results
are encouraging

15

Ongoing Work
Gaining experience and evolving our language
and architecture design

Shield policies more difficult to write, but can be
potentially easy to automate the difficult part of it

Shield at firewall or edge router.
Shield testing

Vulnerabilities easier to reverse-engineer with
Shield — need secure, reliable and expeditious
distribution

Apply Shield principle to anti-virus — scalability a

key challenge. N ;

16

