
1

Shield
-- A First Line Worm Defense

Helen J. Wang, Chuanxiong Guo,
Dan Simon, and Alf Zugenmaier

Feb 25, 2004

Motivation

• Slammer, MSBlast, CodeRed, Nimda all
exploiting known! Vulnerabilities whose
patches are released months! before

• Software patching has not been an
effective first line worm defense

2

Why don’t people patch?

• Disruption:
– Service or machine reboot

• Unreliability
– Software patching inherently hard to test

• Irreversibility
– Most patches are not designed to be easily

reversible
• Accident

– Unaware of patch releases

Our Vision:
Shielding Before Patching

• Shield addresses the window between
vulnerability disclosure and patch
application.

• Shields: vulnerability-specific, exploit-
generic network filters. Currently focus on
end-host based shields.

• Patch is the ultimate fix of the vulnerability
– Shield is removed upon patch application

3

Shield
Vulnerability

Signature
(Per Vulnerability)

Incoming or
Outgoing

Network Traffic

Shielded Traffic
to Processes or
Remote Hosts

Shield Network Filter

New Shield Policy

Overview of Shield Usage

• Shield lies above the transport layer.

Why apply shields instead?

• Non-intrusive
– No service or machine reboot

• Easy testability -- Reliable
– Configuration independent, unlike

patches – much fewer number of test
cases

– Simple testing through large trace replay
or existing test suites for the protocol in
question

4

Outline

Motivation and overview
• Vulnerability Modeling
• Shield Architecture
• Shield Language
• Analysis
• Shield prototype implementations
• Initial evaluations
• Related Work
• Concluding Remarks

Vulnerability Modeling

S0

V4 S5

S2

Embedded
Application State

Machine in State S2

S0

S3

S2S1

S5

Protocol State Machine

S4V4

Vulnerability
State

Machine

Shield Vulnerability Signature:
Specifies vulnerability state machine and
describes how to recognize exploits in
the vulnerable event

5

Shield Architecture: Goals

• Minimize and limit the amount of state
maintained by Shield

• Enough flexibility to support any
application level protocols

• Defensive design

Flexibility:
Separate Policy from Mechanism

• Shield Mechanisms: generic elements all
application level protocols
– All use finite state automaton for protocol operations
– Event identification and session dispatching
– Out-of-order datagram handling
– Application level fragmentation handling

• Shield Policies: varying aspects of individual
application level protocols
– Application identification, event identification, session

identification, vulnerability state machine
specifications

6

Shield Architecture:
Essential Data Structures

1. Per-app vulnerability state machine spec (Spec):
– Transformed from Shield policy
– Instructions for emulating vulnerability state machines

in Shield at the runtime:
• Application identification: ports, dynamic port registration
• Vulnerability signature + reactions: states, events, handlers for

recognizing and reacting to potential exploits
• Event and session identification:

– Location (offset, size) vector of event type and session ID in the
app message. Unit: byte or “WORD” for text-based protocols

• Message boundaries, e.g., CRLF CRLF for HTTP and SMTP

– One state machine per application
• Multiple vulnerability state machines are merged into one

2. Session State: current state and session context
for exploit-checking

Raw bytes
Spec ID

Event for
Session i

Interpret (Handler)

Shield Architecture

ParsePayload
Drop

TearDownSession

New
Policies

Per-App
Vulnerability

State Machine
Specification

Session
State

Session
State

Session
State i

SessionID Location
MessageType Location

Message boundary

HandlerAt(State, Event)

Session
Dispatcher

Policy
Loader

Application
Dispatcher

State
Machine
Engine

Shield
Interpreter SetNextState

Raw bytes
Port #

CurState

7

Scattered Arrivals of
an Application Message

• An application message is the smallest interpretable unit by the
application

• Why scattered arrivals?
– Congestion control or application-specific message handling

• Copying: save then pass on
• What to save (parsing state): the name of the current incomplete

field, the value of the current incomplete field only if the value is
needed by Shield later
– Per application message

• How to differentiate parsing state belonging to multiple sessions:
– Safe to use socket here because only one socket should be used for

delivering a complete application level message despite the M-M
relationship between sockets and sessions.

• Pre-session copying: before the session info arrives
– The parsing state is associated with the socket only

• In-session copying: after the session info arrives
– The parsing state becomes part of the session state

Out-of-Order Application
Datagrams

• Save out-of-order datagrams
• What is the max? Same as the application
• Additional info needed in Shield policy:

seq num location, max number of saved
datagrams

8

Application Level Fragmentation

• Over TCP: same treatment as scattered
arrivals of a single application level
message

• Over UDP: ordered copies of the
fragments are treated the same as
scattered arrivals

• Additional information needed in Shield
policy: frag ID location

Outline

Motivation and overview
Vulnerability Modeling
Shield Architecture

• Shield Language
• Analysis
• Shield prototype implementations
• Initial evaluations
• Related Work
• Concluding Remarks

9

Shield Policy Language
SHIELD (MSBlast, TCP, (135, 139,445))

SESSION_ID_LOCATION = (12, 4);
MSG_TYPE_LOCATION = (2, 1);

INITIAL_STATE S_WaitForRPCBind;
FINAL_STATE S_Final;
STATE S_WaitForRPCBindAck;
STATE S_WaitForRPCAlterContextResponse;
STATE S_WaitForRPCRequest;
STATE S_WaitForSessionTearDown;

Event types
EVENT E_RPCBind = (0x0B, INCOMING);
EVENT E_RPCBindAck = (0x0C, OUTGOING);
EVENT E_RPCRequest = (0x0, INCOMING);
…

STATE_MACHINE = {
(S_WaitForRPCBind, E_RPCBind, H_RPCBind),
(S_WaitForRPCBindAck, E_RPCBindAck, H_RPCBindAck),
(S_WaitForRPCBindAck, E_RPCBindNak, H_RPCBindNak),
(S_WaitForRPCBindAck, E_RPCCancel, H_RPCCancel),
(S_WaitForRPCRequest, E_RPCRequest, H_RPCRequest),
…
};
Payload
PAYLOAD_STRUCT {

SKIP BYTES(2) pContextID,
BYTES(1) numTransferContexts
SKIP BYTES(1) dummy1,
BYTES(16) UUID_RemoteActivation,
SKIP BYTES(4) version,
SKIP BYTES(numTransferContexts * 20)

allTransferContexts,
} P_Context;

PAYLOAD_STRUCT {
SKIP BYTES(12) dummy1,
BYTES(4) callID,
SKIP BYTES(8) dummy2,
BYTES(1) numContexts,
SKIP BYTES(3) dummy3,
P_Context[numContexts] contexts,
SKIP BYTES(REST) dummy4,

} P_RPCBind;
…

HANDLER H_S_RPCBind (P_RPCBind)
{

IF (>>P_RPCBind.contexts[0] ==
0xB84A9F4D1C7DCF11861E0020AF6E7C57)

RETURN (S_WaitForRPCBindAck);
FI
RETURN (S_Final);

};

HANDLER H_RPCRequest (P_RPCRequest)
{

IF (>>P_RPCRequest.bufferSize > 1023)
TEARDOWN_SESSION;
PRINT ("MSBlast!");
RETURN (S_Final);

FI
RETURN (S_WaitForSessionTearDown);

};

Shield Policy Language: Cont.
• High specialized for Shield’s purpose

• Part 1: Vulnerability state machine specification and generic
application level protocol info such as ports used, the locations of
the event type, session ID, message boundary, etc.

• Part 2: Handler and payload parsing specifications for run-time
interpretation
– Handler specification:

Variable types: BOOL, COUNTER, BYTES, WORDS
Two scopes: local or session
Statements: assignment, IF, special-purpose FOR-loop

– Payload specification:
Skippable fields of BYTES, WORDS, BOOL, or arrays of

PAYLOAD_STRUCTs
• Coping with scattered arrivals:

– handler continuation – part of the session state consisting of statement
ID queue, parsing state

– Stream-based built-in length functions or regular expression functions:
e.g., “COUNTER c = MSG_LEN (legalLimit);” c = legalLimit + 1 if msg
exceeds “stopCount” number of bytes

10

Outline

Motivation and overview
Vulnerability Modeling
Shield Architecture
Shield Language

• Analysis
• Shield prototype implementations
• Initial evaluations
• Related Work
• Concluding Remarks

Analysis: Scalability
• Scalability with Number of Vulnerabilities

– # of shields doesn’t grow indefinitely – upon
successful patching, the corresponding shields are
removed

– N shields for N apps 1 shield
– Multiple vulnerabilities of a single app can compound

if they share paths on the vulnerability state machine
– not significant because no more than 3 worm-
exploitable vulnerabilities seen in a single application
in 2003

– Application throughput is at worst halved, traffic
processed once in Shield and once in the application

11

Analysis: False Positives

• Low false positives by nature
• Two sources:

– Misunderstanding of protocol and payload
spec – can be debugged with large traffic
trace or test suites

– Differential treatment of a certain network
event: could be an exploit in one runtime
setting, and yet completely legal in another

Shield Prototype Implementation

TCP/IP ATM Others.

Windows Socket Kernel Mode Driver
(AFD.SYS)

Shield Layered Service Provider
(SHIELDLSP.DLL)

Winsock 2.0 (WS2_32.DLL)

Applications

K
ern

el
U

ser

• 10,702 line C++ code;
• Experimented with 15 vulnerabilities and 7 application

level protocols, such as RPC, HTTP, SMTP, FTP, SMB

12

Outline

Motivation and overview
Vulnerability Modeling
Shield Architecture
Shield Language
Analysis
Shield prototype implementations

• Initial evaluations
• Related Work
• Concluding Remarks

Evaluation: Shield-ability

• What are hard to shield:
– Virus

• vulnerability-driven anti-virus software would be a
better alternative

– Vulnerabilities that could be embedded in
HTML scripting

– Application-specific encrypted traffic – may be
hard to get the key.

• But for SSL/TLS, an SSL-based shield framework
can potentially be built on top of SSL

13

Evaluation: Shield-ability, Cont.

Study of 49 vulnerabilities from MS
Security bulletin board in 2003

HardNoServer DoS3

HardNoCross-site
scripting

3

EasyYesServer input
validation

12

HardNoClient24

NoNoLocal6

Shield-ableWorm-ableNature# of vul.

Evaluation: Throughput

• Clients and a server use RPC/TCP.
Server sends 100 MB of data back to
initiating clients. Every byte is accessed
by Shield on the server

• Both have P4 2.8GHz and 512 MB of
RAM, connected by 100Mbps Ethernet
switch.

14

Evaluation: Throughput

57.5666.291000

82.2984.27500

81.7086.06200

86.2486.67150

85.8686.48100

86.2086.6650

86.3686.5715

86.2086.5110

w/ Sheld
(Mbps)

w/o Shield
(Mbps)

of clients

Evaluation: False Positives

• Evaluate on shield for Slammer.
• Used an SSRP stress test suite obtained

from a MS test group: 32 test cases for 12
message types

• No false positives observed.

15

Related Work

• Threats of Internet worms:
– 0wn Internet, CodeRed study, Inside Slammer,

Internet quarantine, Warhol

• Insufficiency of patches:
– Timing patching, CodeRed study,

• Firewall
– More coarse-grained, high-false positive solution
– Will be much improved by fast exploit-signature

generation schemes such as “early bird”

• NIDS (such as Bro), traffic normalizers
– Different layers and different purposes from Shield

Concluding Remarks

• Shield: vulnerability-specifc, exploit
generic network filters for preventing
exploits against known vulnerabilities.

• Initial prototyping and evaluation results
are encouraging

16

Ongoing Work
• Gaining experience and evolving our language

and architecture design
• Shield policies more difficult to write, but can be

potentially easy to automate the difficult part of it
• Shield at firewall or edge router.
• Shield testing
• Vulnerabilities easier to reverse-engineer with

Shield – need secure, reliable and expeditious
distribution

• Apply Shield principle to anti-virus – scalability a
key challenge.

