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Motivation

• Slammer, MSBlast, CodeRed, Nimda all 
exploiting known! Vulnerabilities whose 
patches are released months! before

• Software patching has not been an 
effective first line worm defense
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Why don’t people patch?

• Disruption:
– Service or machine reboot

• Unreliability 
– Software patching inherently hard to test

• Irreversibility 
– Most patches are not designed to be easily 

reversible
• Accident

– Unaware of patch releases

Our Vision: 
Shielding Before Patching

• Shield addresses the window between 
vulnerability disclosure and patch 
application.

• Shields: vulnerability-specific, exploit-
generic network filters. Currently focus on 
end-host based shields.

• Patch is the ultimate fix of the vulnerability
– Shield is removed upon patch application
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Overview of Shield Usage

• Shield lies above the transport layer.

Why apply shields instead?

• Non-intrusive
– No service or machine reboot

• Easy testability -- Reliable
– Configuration independent, unlike 

patches – much fewer number of test 
cases

– Simple testing through large trace replay 
or existing test suites for the protocol in 
question
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Outline

Motivation and overview
• Vulnerability Modeling
• Shield Architecture
• Shield Language
• Analysis
• Shield prototype implementations
• Initial evaluations
• Related Work
• Concluding Remarks

Vulnerability Modeling
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Shield Vulnerability Signature:
Specifies vulnerability state machine and 
describes how to recognize exploits in 
the vulnerable event
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Shield Architecture: Goals

• Minimize and limit the amount of state 
maintained by Shield

• Enough flexibility to support any 
application level protocols

• Defensive design

Flexibility: 
Separate Policy from Mechanism

• Shield Mechanisms: generic elements all 
application level protocols
– All use finite state automaton for protocol operations
– Event identification and session dispatching
– Out-of-order datagram handling
– Application level fragmentation handling

• Shield Policies: varying aspects of individual 
application level protocols
– Application identification, event identification, session 

identification, vulnerability state machine 
specifications
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Shield Architecture: 
Essential Data Structures

1. Per-app vulnerability state machine spec (Spec): 
– Transformed from Shield policy
– Instructions for emulating vulnerability state machines 

in Shield at the runtime: 
• Application identification: ports, dynamic port registration
• Vulnerability signature + reactions: states, events, handlers for 

recognizing and reacting to potential exploits
• Event and session identification:

– Location (offset, size) vector of event type and session ID in the 
app message. Unit: byte or “WORD” for text-based protocols

• Message boundaries, e.g., CRLF CRLF for HTTP and SMTP

– One state machine per application
• Multiple vulnerability state machines are merged into one

2. Session State: current state and session context 
for exploit-checking
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Scattered Arrivals of 
an Application Message

• An application message is the smallest interpretable unit by the 
application

• Why scattered arrivals? 
– Congestion control or application-specific message handling

• Copying: save then pass on
• What to save (parsing state): the name of the current incomplete 

field, the value of the current incomplete field only if the value is 
needed by Shield later
– Per application message

• How to differentiate parsing state belonging to multiple sessions: 
– Safe to use socket here because only one socket should be used for 

delivering a complete application level message despite the M-M 
relationship between sockets and sessions.

• Pre-session copying: before the session info arrives
– The parsing state is associated with the socket only 

• In-session copying: after the session info arrives
– The parsing state becomes part of the session state

Out-of-Order Application 
Datagrams

• Save out-of-order datagrams
• What is the max? Same as the application
• Additional info needed in Shield policy: 

seq num location, max number of saved 
datagrams
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Application Level Fragmentation

• Over TCP: same treatment as scattered 
arrivals of a single application level 
message

• Over UDP: ordered copies of the 
fragments are treated the same as 
scattered arrivals

• Additional information needed in Shield 
policy: frag ID location

Outline

Motivation and overview
Vulnerability Modeling
Shield Architecture

• Shield Language
• Analysis
• Shield prototype implementations
• Initial evaluations
• Related Work
• Concluding Remarks
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Shield Policy Language
SHIELD (MSBlast, TCP, (135, 139,445))

SESSION_ID_LOCATION = (12, 4);
MSG_TYPE_LOCATION = (2, 1);

INITIAL_STATE S_WaitForRPCBind;
FINAL_STATE   S_Final;
STATE S_WaitForRPCBindAck;
STATE S_WaitForRPCAlterContextResponse;
STATE S_WaitForRPCRequest;
STATE S_WaitForSessionTearDown;

# Event types
EVENT E_RPCBind = (0x0B, INCOMING);
EVENT E_RPCBindAck = (0x0C, OUTGOING);
EVENT E_RPCRequest = (0x0,  INCOMING);
…

STATE_MACHINE = {
(S_WaitForRPCBind, E_RPCBind, H_RPCBind),
(S_WaitForRPCBindAck, E_RPCBindAck, H_RPCBindAck),
(S_WaitForRPCBindAck, E_RPCBindNak, H_RPCBindNak),
(S_WaitForRPCBindAck, E_RPCCancel,  H_RPCCancel),
(S_WaitForRPCRequest, E_RPCRequest, H_RPCRequest),
…
};
# Payload
PAYLOAD_STRUCT {

SKIP BYTES(2)             pContextID, 
BYTES(1) numTransferContexts
SKIP BYTES(1)             dummy1, 
BYTES(16) UUID_RemoteActivation,
SKIP BYTES(4)             version, 
SKIP BYTES(numTransferContexts * 20) 

allTransferContexts,
} P_Context;

PAYLOAD_STRUCT {
SKIP BYTES(12)             dummy1, 
BYTES(4)                        callID, 
SKIP BYTES(8)               dummy2, 
BYTES(1)              numContexts, 
SKIP BYTES(3) dummy3,
P_Context[numContexts] contexts, 
SKIP BYTES(REST)                 dummy4,

} P_RPCBind;
…

HANDLER H_S_RPCBind (P_RPCBind)
{

IF (>>P_RPCBind.contexts[0] == 
0xB84A9F4D1C7DCF11861E0020AF6E7C57) 

RETURN (S_WaitForRPCBindAck);      
FI
RETURN (S_Final);

};

HANDLER H_RPCRequest (P_RPCRequest)
{

IF (>>P_RPCRequest.bufferSize > 1023)
TEARDOWN_SESSION;
PRINT ("MSBlast!");
RETURN (S_Final);

FI   
RETURN (S_WaitForSessionTearDown);

};

Shield Policy Language: Cont.
• High specialized for Shield’s purpose

• Part 1: Vulnerability state machine specification and generic 
application level protocol info such as ports used, the locations of 
the event type, session ID, message boundary, etc.

• Part 2: Handler and payload parsing specifications for run-time 
interpretation
– Handler specification:

Variable types: BOOL, COUNTER, BYTES, WORDS  
Two scopes:  local or session
Statements: assignment, IF, special-purpose FOR-loop

– Payload specification:
Skippable fields of BYTES, WORDS, BOOL, or arrays of 

PAYLOAD_STRUCTs
• Coping with scattered arrivals: 

– handler continuation – part of the session state consisting of statement 
ID queue, parsing state

– Stream-based built-in length functions or regular expression functions: 
e.g., “COUNTER c = MSG_LEN (legalLimit);” c = legalLimit + 1 if msg
exceeds “stopCount” number of bytes
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• Concluding Remarks

Analysis: Scalability
• Scalability with Number of Vulnerabilities

– # of shields doesn’t grow indefinitely – upon 
successful patching, the corresponding shields are 
removed

– N shields for N apps 1 shield
– Multiple vulnerabilities of a single app can compound 

if they share paths on the vulnerability state machine 
– not significant because no more than 3 worm-
exploitable vulnerabilities seen in a single application 
in 2003

– Application throughput is at worst halved, traffic 
processed once in Shield and once in the application
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Analysis: False Positives

• Low false positives by nature
• Two sources:

– Misunderstanding of protocol and payload 
spec – can be debugged with large traffic 
trace or test suites

– Differential treatment of a certain network 
event: could be an exploit in one runtime 
setting, and yet completely legal in another 

Shield Prototype Implementation

TCP/IP ATM Others.

Windows Socket Kernel Mode Driver 
(AFD.SYS)

Shield Layered Service Provider 
(SHIELDLSP.DLL)

Winsock 2.0 (WS2_32.DLL)

Applications

K
ern
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U

ser

• 10,702 line C++ code; 
• Experimented with 15 vulnerabilities and 7 application 

level protocols, such as RPC, HTTP, SMTP, FTP, SMB
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• Concluding Remarks

Evaluation: Shield-ability

• What are hard to shield:
– Virus

• vulnerability-driven anti-virus software would be a 
better alternative

– Vulnerabilities that could be embedded in 
HTML scripting 

– Application-specific encrypted traffic – may be 
hard to get the key. 

• But for SSL/TLS, an SSL-based shield framework 
can potentially be built on top of SSL



13

Evaluation: Shield-ability, Cont.

Study of 49 vulnerabilities from MS 
Security bulletin board in 2003

HardNoServer DoS3

HardNoCross-site 
scripting

3

EasyYesServer input 
validation

12

HardNoClient24

NoNoLocal6

Shield-ableWorm-ableNature# of vul.

Evaluation: Throughput

• Clients and a server use RPC/TCP. 
Server sends 100 MB of data back to 
initiating clients. Every byte is accessed 
by Shield on the server

• Both have P4 2.8GHz and 512 MB of 
RAM, connected by 100Mbps Ethernet 
switch.
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Evaluation: Throughput
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Evaluation: False Positives

• Evaluate on shield for Slammer.
• Used an SSRP stress test suite obtained 

from a MS test group: 32 test cases for 12 
message types

• No false positives observed.
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Related Work

• Threats of Internet worms: 
– 0wn Internet, CodeRed study, Inside Slammer, 

Internet quarantine, Warhol

• Insufficiency of patches:
– Timing patching, CodeRed study, 

• Firewall 
– More coarse-grained, high-false positive solution
– Will be much improved by fast exploit-signature 

generation schemes such as “early bird”

• NIDS (such as Bro), traffic normalizers
– Different layers and different purposes from Shield

Concluding Remarks

• Shield: vulnerability-specifc, exploit 
generic network filters for preventing 
exploits against known vulnerabilities.

• Initial prototyping and evaluation results 
are encouraging
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Ongoing Work
• Gaining experience and evolving our language 

and architecture design
• Shield policies more difficult to write, but can be 

potentially easy to automate the difficult part of it
• Shield at firewall or edge router.
• Shield testing
• Vulnerabilities easier to reverse-engineer with 

Shield – need secure, reliable and expeditious 
distribution

• Apply Shield principle to anti-virus – scalability a 
key challenge.


